3.258 \(\int \frac{\sqrt{\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=107 \[ \frac{(3 A+B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

((3*A + B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a
^(3/2)*d) - ((A - B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.194627, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {4012, 3808, 206} \[ \frac{(3 A+B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((3*A + B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a
^(3/2)*d) - ((A - B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 4012

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n
, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0]
&& LeQ[m, -1]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac{(A-B) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A+B) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{(A-B) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{(3 A+B) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac{(3 A+B) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.21888, size = 84, normalized size = 0.79 \[ \frac{\cos \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{3}{2}}(c+d x) \left ((B-A) \sin \left (\frac{1}{2} (c+d x)\right )+(3 A+B) \cos ^2\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{d (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*((3*A + B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^2 + (-A + B)*Sin[(c
 + d*x)/2]))/(d*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.292, size = 219, normalized size = 2.1 \begin{align*}{\frac{\cos \left ( dx+c \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1 \right ) }{4\,d{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( A\cos \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}+3\,A\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sin \left ( dx+c \right ) -B\cos \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}+B\arctan \left ({\frac{\sin \left ( dx+c \right ) }{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \sin \left ( dx+c \right ) -A\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}+B\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d/a^2*(1/cos(d*x+c))^(1/2)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)*(A*cos(d*x+c)*(-2/(cos(d*x+c)+1)
)^(1/2)+3*A*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-B*cos(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2)
+B*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-A*(-2/(cos(d*x+c)+1))^(1/2)+B*(-2/(cos(d*x+c)+1
))^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)/sin(d*x+c)^3*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.513246, size = 995, normalized size = 9.3 \begin{align*} \left [\frac{\sqrt{2}{\left ({\left (3 \, A + B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, A + B\right )} \cos \left (d x + c\right ) + 3 \, A + B\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \,{\left (A - B\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac{\sqrt{2}{\left ({\left (3 \, A + B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, A + B\right )} \cos \left (d x + c\right ) + 3 \, A + B\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \,{\left (A - B\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(2)*((3*A + B)*cos(d*x + c)^2 + 2*(3*A + B)*cos(d*x + c) + 3*A + B)*sqrt(a)*log(-(a*cos(d*x + c)^2 -
 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c)
- 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x
 + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((3*A + B)*cos(d*x +
 c)^2 + 2*(3*A + B)*cos(d*x + c) + 3*A + B)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x +
 c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^(3/2), x)